8 research outputs found

    Influenza activity in Cambodia during 2006-2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little information about influenza disease among the Cambodian population. To better understand the dynamics of influenza in Cambodia, the Cambodian National Influenza Center (NIC) was established in August 2006. To continuously monitor influenza activity, a hospital based sentinel surveillance system for ILI (influenza like illness) with a weekly reporting and sampling scheme was established in five sites in 2006. In addition, hospital based surveillance of acute lower respiratory infection (ALRI) cases was established in 2 sites.</p> <p>Methods</p> <p>The sentinel sites collect weekly epidemiological data on ILI patients fulfilling the case definition, and take naso-pharyngeal specimens from a defined number of cases per week. The samples are tested in the Virology Unit at the Institut Pasteur in Phnom Penh. From each sample viral RNA was extracted and amplified by a multiplex RT-PCR detecting simultaneously influenza A and influenza B virus. Influenza A viruses were then subtyped and analyzed by hemagglutination inhibition assay. Samples collected by the ALRI system were tested with the same approach.</p> <p>Results</p> <p>From 2006 to 2008, influenza circulation was observed mainly from June to December, with a clear seasonal peak in October shown in the data from 2008.</p> <p>Conclusion</p> <p>Influenza activity in Cambodia occurred during the rainy season, from June to December, and ended before the cool season (extending usually from December to February). Although Cambodia is a tropical country geographically located in the northern hemisphere, influenza activity has a southern hemisphere transmission pattern. Together with the antigenic analysis of the circulating strains, it is now possible to give better influenza vaccination recommendation for Cambodia.</p

    The tolerability of single low dose primaquine in glucose-6-phosphate deficient and normal falciparum-infected Cambodians

    No full text
    Abstract Background The WHO recommends single low-dose primaquine (SLDPQ, 0.25 mg/kg body weight) in falciparum-infected patients to block malaria transmission and contribute to eliminating multidrug resistant Plasmodium falciparum from the Greater Mekong Sub region (GMS). However, the anxiety regarding PQ-induced acute haemolytic anaemia in glucose-6-phosphate dehydrogenase deficiency (G6PDd) has hindered its use. Therefore, we assessed the tolerability of SLDPQ in Cambodia to inform national policy. Methods This open randomised trial of dihydroartemisinin-piperaquine (DHAPP) + SLDPQ vs. DHAPP alone recruited Cambodians aged ≥1 year with acute uncomplicated P. falciparum. Randomisation was 4:1 DHAPP+SLDPQ: DHAPP for G6PDd patients and 1:1 for G6PDn patients, according to the results of the qualitative fluorescent spot test. Definitive G6PD status was determined by genotyping. Day (D) 7 haemoglobin (Hb) concentration was the primary outcome measure. Results One hundred nine patients (88 males, 21 females), aged 4–76 years (median 23) were enrolled; 12 were G6PDd Viangchan (9 hemizygous males, 3 heterozygous females). Mean nadir Hb occurred on D7 [11.6 (range 6.4 ─ 15.6) g/dL] and was significantly lower (p = 0.040) in G6PDd (n = 9) vs. G6PDn (n = 46) DHAPP+SLDPQ recipients: 10.9 vs. 12.05 g/dL, Δ = -1.15 (95% CI: -2.24 ─ -0.05) g/dL. Three G6PDn patients had D7 Hb concentrations < 8 g/dL; D7-D0 Hbs were 6.4 ─ 6.9, 7.4 ─ 7.4, and 7.5 ─ 8.2 g/dL. For all patients, mean (range) D7-D0 Hb decline was -1.45 (-4.8 ─ 2.4) g/dL, associated significantly with higher D0 Hb, higher D0 parasitaemia, and receiving DHAPP; G6PDd was not a factor. No patient required a blood transfusion. Conclusions DHAPP+SLDPQ was associated with modest Hb declines in G6PD Viangchan, a moderately severe variant. Our data augment growing evidence that SLDPQ in SE Asia is well tolerated and appears safe in G6PDd patients. Cambodia is now deploying SLDPQ and this should encourage other GMS countries to follow suit. Trial registration The clinicaltrials.gov reference number is NCT02434952

    Discovering disease-causing pathogens in resource-scarce Southeast Asia using a global metagenomic pathogen monitoring system.

    No full text
    SignificanceMetagenomic pathogen sequencing offers an unbiased approach to characterizing febrile illness. In resource-scarce settings with high biodiversity, it is critical to identify disease-causing pathogens in order to understand burden and to prioritize efforts for control. Here, metagenomic next-generation sequencing (mNGS) characterization of the pathogen landscape in Cambodia revealed diverse vector-borne and zoonotic pathogens irrespective of age and gender as risk factors. Identification of key pathogens led to changes in national program surveillance. This study is a "real world" example of the use of mNGS surveillance of febrile individuals, executed in-country, to identify outbreaks of vector-borne, zoonotic, and other emerging pathogens in a resource-scarce setting

    Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study

    No full text
    Background: The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. Methods: P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers (pfkelch, pfcrt, pfplasmepsin2, and pfmdr1) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. Findings: 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from −50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand–Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin–piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. Interpretation: Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. Funding: Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust

    Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro

    No full text
    corecore